三角函数公式总结,三角函数公式大全?

三角函数公式大全?

一、倍角公式

1、Sin2A=2SinA*CosA

2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )

二、降幂公式

1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2

2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2

3、tan^2(α)=(1-cos(2α))/(1+cos(2α))

三、推导公式

1、1tanα+cotα=2/sin2α

2、tanα-cotα=-2cot2α

3、1+cos2α=2cos^2α

4、、4-cos2α=2sin^2α

5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina

四、两角和差

1、1cos(α+β)=cosα·cosβ-sinα·sinβ

2、cos(α-β)=cosα·cosβ+sinα·sinβ

3、sin(α±β)=sinα·cosβ±cosα·sinβ

4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

五、和差化积

1、sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

六、积化和差

1、sinαsinβ = [cos(α-β)-cos(α+β)] /2

2、sinαcosβ = [sin(α+β)+sin(α-β)]/2

3、cosαsinβ = [sin(α+β)-sin(α-β)]/2

七、诱导公式

1、(-α) = -sinα、cos(-α) = cosα

2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα

3、3cos(π/2+α) = -sinα

4、(π-α) = sinα、cos(π-α) = -cosα

5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα

6、tan(π-α)=-tanα、tan(π+α)=tanα

八、锐角三角函数公式

1、sin α=∠α的对边 / 斜边

2、α=∠α的邻边 / 斜边

3、tan α=∠α的对边 / ∠α的邻边

4、cot α=∠α的邻边 / ∠α的对边

求三角函数公式全部?

基本的:sinx=1/cosx,tanx=sinx/cosx,sin²x+cos²x=1,sin(π/2-x)=cosx,1+tanx=secx三角函数诱导公式:sin(kπ/2±x)=±sinx或±cosx,cos(kπ/2±x)=±sinx或±cosx,tan(kπ/2±x)=±tanx或±cotx,奇变偶不变,符号看象限。(奇变偶不变是指k,k为基数则变,k为偶数则不变,变是相对于题目给定的,比如题目给sin,变就换成cos,不变就还用sin;符号的问题:把x看作一个锐角,找到kπ/2±x的终边,根据终边所在的角的sin或cos正负来判断化简后的符号)倍角公式:sin2x=2sinxcosx,cos2x=cos²x-sin²x,tan2x=2tanx/(1-tan²x)三角函数求导:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=1/cos²x=sec²x=1+tan²x两角和差:sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb;cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb,tan(α+β)=(tanα+tanβ)/(1-tanαtanβ),tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

常用的三角函数公式有哪些?

常用的三角函数公式有:半角公式、倍角公式、两角和与差公式、积化和差公式、和差化积公式。

三角函数半角公式

sin(A/2)=±√((1-cosA)/2)

cos(A/2)=±√((1+cosA)/2)

tan(A/2)=±√((1-cosA)/((1+cosA))

三角函数倍角公式

Sin2A=2SinA*CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

三角函数两角和与差公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cossinB

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

三角函数积化和差

sinAsinB=-[cos(A+B)-cos(A-B)]/2

cosAcosB=[cos(A+B)+cos(A-B)]/2

sinAcosB=[sin(A+B)+sin(A-B)]/2

cosAsinB=[sin(A+B)-sin(A-B)]/2

三角函数和差化积

sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]

sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]

cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]

cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函数基本公式?

1.诱导公式sin(-a)=-sin(a) cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.二倍角公式 sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式 sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式 sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 ) a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan©=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2